Template Adaptation for Improving Automatic Music Transcription
نویسندگان
چکیده
In this work, we propose a system for automatic music transcription which adapts dictionary templates so that they closely match the spectral shape of the instrument sources present in each recording. Current dictionary-based automatic transcription systems keep the input dictionary fixed, thus the spectral shape of the dictionary components might not match the shape of the test instrument sources. By performing a conservative transcription pre-processing step, the spectral shape of detected notes can be extracted and utilized in order to adapt the template dictionary. We propose two variants for adaptive transcription, namely for single-instrument transcription and for multiple-instrument transcription. Experiments are carried out using the MAPS and Bach10 databases. Results in terms of multi-pitch detection and instrument assignment show that there is a clear and consistent improvement when adapting the dictionary in contrast with keeping the dictionary fixed.
منابع مشابه
Automatic Drum Sound Description for Real-World Music Using Template Adaptation and Matching Methods
This paper presents an automatic description system of drum sounds for real-world musical audio signals. Our system can represent onset times and names of drums by means of drum descriptors defined in the context of MPEG-7. For their automatic description, drum sounds must be identified in such polyphonic signals. The problem is that acoustic features of drum sounds vary with each musical piece...
متن کاملDrum Transcription Using Partially Fixed Non-Negative Matrix Factorization with Template Adaptation
In this paper, a template adaptive drum transcription algorithm using partially fixed Non-negative Matrix Factorization (NMF) is presented. The proposed method detects percussive events in complex mixtures of music with a minimal training set. The algorithm decomposes the music signal into two dictionaries: a percussive dictionary initialized with pre-defined drum templates and a harmonic dicti...
متن کاملMulti-Template Shift-Variant Non-Negative Matrix Deconvolution for Semi-Automatic Music Transcription
For the task of semi-automatic music transcription, we extended our framework for shift-variant non-negative matrix deconvolution (svNMD) to work with multiple templates per instrument and pitch. A k-means clustering based learning algorithm is proposed that infers the templates from the data based on the provided user information. We experimentally explored the maximum achievable transcription...
متن کاملAutomatic Transcription of Polyphonic Music Exploiting Temporal Evolution
Automatic music transcription is the process of converting an audio recording into a symbolic representation using musical notation. It has numerous applications in music information retrieval, computational musicology, and the creation of interactive systems. Even for expert musicians, transcribing polyphonic pieces of music is not a trivial task, and while the problem of automatic pitch estim...
متن کاملAn Efficient Shift-Invariant Model for Polyphonic Music Transcription
In this paper, we propose an efficient model for automatic transcription of polyphonic music. The model extends the shift-invariant probabilistic latent component analysis method and uses pre-extracted and pre-shifted note templates from multiple instruments. Thus, the proposed system can efficiently transcribe polyphonic music, while taking into account tuning deviations and frequency modulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014